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ABSTRACT 

A computationally feasible and strongly consistent method is considered for 

estimating the coefficients of 

0 t       1   t-1 p t-p       t 

The steady-state solution is observed in the presence of nonwhite noise,  and the 

system is driven by a certain selected superposition of sinusoids,  u .    When the noise 

is white, the estimates are shown to possess an asymptotic normal distribution with 

covariance matrix which depends on the coefficients only via the values of 

P 
i V        ikuj.2 

k=n 

evaluated at the input frequencies. 
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1. INTRODUCTION 

We observe the steady state solution of a p     order differenee equation in the pre- 

sence of additive noise.    The deterministic input sequence is at our disposal,  up to an 

unknown gain.    Corresponding to a superposition of sinusoidal inputs,  we exhibit an 

estimate of the p + 1 parameters having the following properties. 

(i)   On-line computation of the estimates can be done recursively in the incoming 

data by operations which entail only first-order storage requirements,    (ii)   As the 

observation time increases to infinity the estimate is strongly consistent under very 

weak conditions on the noise process, which include stationarity but not the existence 

of a power spectrum,    (iii)   The standardized estimates tend to joint normality with a 

covariance matrix which is relatively easy to calculate when the noise is white.    If, 

in addition, the noise is Gaussian,  the estimate has minimal (generalized) variance. 

The initial step is "naive" least squares,  i.e.  solving normal equations (and hence 

(i)).    Simple instantaneous nonlinear operations are then performed on the least squares 

solution.    The result is mapped by a fixed matrix into the estimate of the ratio of 

coefficients to gain. 

2. THE MODEL AND ESTIMATE 

Corresponding to a given deterministic sequence   {u },  let {x } satisfy 

x   =0,x     +---+Ö  x       + Ku (t = ...f-1,0, 1,...) 
t       1   t-1 p  t-p t 

for some input gain K f 0.    We will assume stability,  i.e. that the p roots of the 

characteristic equation 

AP-öAP"
1 0 = 0 

1 p 

are each in modulus less than unity.    We will also assume, but only for the sake of 

simplicity, that the roots are distinct. 

We observe 

yt=xt + £t (t = l,2, ...,n, ...), 



where {t, }   is some zero mean stochastic process,  and suppose that the regression se- 

quence was arbitrarily initialized in the remote past.    In statistical terminology we 

are faced with a particular nonlinear regression problem: 

xt = Ft(K'ei V 

is known up to the values of p + 1  parameters to be estimated. 

The input. To estimate K and  0 , . . ., 0    we distinguish between odd and even 

values of p+ 1,  and accordingly take for the input 

^2 

1      V —  +   )  cosw t 

u    = < 
t 

^2 

J = l 

(-1) cosw.t +-—- 
J      ^2 

j = 1 

if p = 2q 

if p = 2q+l. 

The angular frequencies 

0 < a; 1 < < OJ      < 7T 

are to be chosen.    Thus, the input is  1/^2 when p = 0, giving the constant regression 

K/\/2 for the trivial case of no 0's.   The input is  1/^2 + (-1) /sfl when p=l, 

l/\l2 + cos cot when p= 2, and so on. 
1 

We present the estimation procedure for an even number of parameters.    After 

doing so, we indicate the modifications to be made for an odd number,  as well as for 

the case when the gain is known.    Thus,  in what follows, 

p + 1 = 2q + 2 

for some integer q ^ 0. 



Step 1.   Choose q distinct frequencies interior to (0, n), and define 

.1 
h' 

i 

l                                                                   (-1) 
  , coso>,t, sinw.t, ...,cosw t, sinw t,  
^2 q q     ^2 

for t = 1, 2,..., n with n > p.   Define matrices 

H   = [h,,...,h 1 B   =(H H' )' 
n 1 n n n   n 

where prime denotes transposition.    Let   y   be the column vector of the first n 

observations y.,... ,y , and let 
1 n 

w   = B H   y   . 
n       n  n   n 

It is known that successive vectors so defined (the solutions of normal equations for 

increasing sample size) satisfy the difference equation 

o = cp       + k (y   -h' 0      ) 
n       n-1       n   n     n   n-1 

(n=l,2,... ; <p   = 0) 

where the gain vectors can be computed recursively without matrix inversions.    We 

are not interested in the details of such computations - only that they can be done. 

Step 2.   At each n, then, we have a (p+1) - vector whose components (for 

reasons which will become clear) we label as 

(p ••l&.&.b? a<"» , b<"> , a<"> 
n 0 q+1 

From it we compute a new vector 

v = r c
(n) c

(n) d
(n)    c

(n) d
(n) c

(n) 
n 0 1 1 q q q+1 



by means of the relations 

(n) 
» 

(n)' 
a. + 

J    J 

.(n) 

d<n) = 
(n)\2 + /,(n)^2 

a. +     b. 

These hold for j =0,1,..., q, q+1 with b^    = b^ = 0. 

Step 3.   Next form the p +1 by p+1 (p= 1, 3,. ..) matrix 

1 1 1 ... 1 

M = 

1 COSW, COs2C0.j 

0       sin cu ^       sin2<x>,j 

1      cosw        cos 2ci> 

0       sind; sin2oj 

-1 + 1 

cospcu^ 

sinpct)| 

cospcof 

sinpu^ 

+ 1 

This matrix is nonsingular, and we can compute 



y 

y 

y 

(n) 
0 

(n) 
1 

(n) 

_YP   J 

-1 
M    ip 

for n > p. 

(n) Step 4.   The estimate of K based on the first n observations is   Vyn   » and that of 

9   is -v    /y      (k= 1, 2 p).   If the original system is rewritten 

•y^x  +y*x    .+'°'+yx      =u, 0  t       1  t-1 p  t-p      t 

and it is the y's which are to be estimated, then the procedure terminates with Step 3. 

Odd number of parameters.    When 

p+l = 2q+l    (q > 0) 

we modify the preceding by 

(i)   deleting the last entry of h   in Step 1, 

(ii)   deleting the last entries of <p   and i[>   in Step 2, 

(iii)   deleting the last row of M in Step 3, 

and leave everything else unchanged. 

Choice of input frequencies -The inversion of M is obviated when we use the par- 

ticular angular frequencies 

27ri 
CO.  = ,L; 

J      p + 1 
(j = l> 2 q). 



For p + 1 = 2q + 2, put 

S = 

1 
p + 1 

p+1 

n 

o 

p+i 
l 

P + I 

The matrix S"   M is orthogonal,  so it is any easy matter to solve the equations in 

Step 3.    We get for k = 0, l,...,p 

» q 
(n) =  _0_ +_2_ 

'k        p + l     p + l 
fM .(n)„,. [ c"    coskw.+d      sinkco.      +-—•-  c' 
\  J J        j J y      p+1     q+1 

(-1) » 

i=l 

For p + 1 = 2q+l the last term is dropped. 

Known input gain.    When K is known, we replace the input u   by u /K and every- 

where read p for p + 1.    In Step 3 the first column of M is deleted, and the estimate 

of 9.   is the k     component of -M     ijj      (k = 1, 2,. .. , p), i.e. yn    = 1. 
k n 0 

3.     THE ASYMPTOTIC BEHAVIOR OF THE ESTIMATES 

The following two lemmas preceding the theorems of interest contain known re- 

sults, and are included only to make the report self-contained.    Proofs of the lemmas 

and theorems are given in Sec. 4 and Sec. 5 respectively. 

Lemma 1.   Let  9 ,. .., 0    be any real numbers such that the roots 

1 p 

of 

g(A) = AP-ö1AP" -0=0 
P 



are in modulus less than unity and distinct.    Let {v }   be any bounded number se- 

quence.    Then the steady state solution of 

x   = 0, x    .+••• + 0 x       + v 
t       1   t-1 p   t-p       t 

IS 

where 

x    =   )   ß   v 
t      LJ    n   t-n 

n=0 

P xP"1 

k=l 

k 
k n<vv 

Lemma 2.   For the particular input 

v   = K cos cot (K^O, w arbitrary) 

the conclusion of Lemma 1 reads 

x   = a cos cot + b sin cot 
t 

where 

P 
a •y coskco 

2       2        LJ  'k 
a   +b k=0 

P 
b y. sinkco J-l 

and 

2       2        LJ   k 
a   +b        k=0 

1 flk 
Yn =  K yk = _T (k=1'2 p)- 



Theorem 1.    In the notation of Sec.  2 let 

0' = [K,0lf...,fl 
P 

- rin) v(n) -. 
n (n) ' (n)   '••*'        (n) 

y0 yQ y0 

with p + 1 even or odd as the case may be.   Then 

P{lim 0   = 0} = 1 
n      n 

for any distinct interior points w  w   of (0,•n) and any 0 mean stochastic process 

{£ } for which 
t 

^«tfihi-i.- 0(1/h£) 

ash-*« for some e > 0. 

Theorem 2.  Let {| }  be a sequence of independent zero mean random variables 

with common variance     a , and suppose sup Q |£   |        <°° for some  ö > 0.    Choose 

0=o;0<a;1<-.. < coq < wq+1 = ir, 

which are otherwise unrestricted. 

(a)     The (p + l)-vector Vn(y -y) has a large sample normal distribution about the 

origin with covariance matrix, for p + 1 = 2q+ 2 even, 

2-12    -1' 
S = 2CT   M     P   M 

P=diag[p0,p1,p1,...,pq,pq,pq+1]. 

M is given in Step 3, and the entries of P are 



\ • ikW •      9 

k=0 

(j = 0, l,...,q,q+l) 

(b)      The covariance matrix of the asymptotic normal distribution of ^n(0 - 0) 

is 

A' Z A 

where 

A= -K 

K 

-4 1 2 

and I is the pxp identity.   The entries of P are also expressible as 

prp-lv ]\2-f^ J>i2 
K
  k-i K 

(g=gp). 

i.e. in terms of the coefficients  Q,,...,0    or the characteristic roots \,,...,\ . 
1 p 1 p 

(c)      For p + 1 = 2q+l odd,   we delete the last row of M and the last entry of P 

under (a). 

Corollary.   For 

27Ti 
V pi     0 = 1.2.....q> 

the covariance matrix Z   in Theorem 2(a) becomes a Toeplitz matrix with entries 

2a 

ab     (P + 1)' 
P0 Z Pj Cos(b"a)a,j + pq+l(_1) (a, b = 0, 1,... ,p). 



The generalized variance of the asymptotic distribution of \/n(y -y) is 

,     v      . /4a2    V+1  2   4 4   2 
d6t *V~/       P0Pl",pqVl  ' 

and that of \ln(0 - 0) is 
n 

/ 4fT2 \P+1     1 2224 242 2 
det(A' 2 A) = < (-^)       — (K p0)    (K Pl)    •.. (K Pq)    (K pq+1)   . 

K 

Each of the factors K p. depends only on the 0's, and is no larger than 4  . 

Confidence intervals free of unknowns.   We can consistently estimate p. by 

P**-    Ti J-       (1-0.1 q,q+l;b<n)=b;;»S0) 

' '*?>)+(§> 

resulting from Step 1.    Letting P    be the diagonal matrix [ p    , p    , p     p   , p    - P +^ 1. 

the vector of p + 1 = 2q + 2 random variables 

-1        — 
P      IvWn(y -y) 

n n 
n 1 

--2-— \  (y -h'<p )' 
n-1   ZJ    t     t^n 

;yt-ht>n;2 

has a standardized multivariate normal distribution in large samples. 

Again,  it is only necessary to delete all terms involving p when 
q I 1 

p + 1 = 2q+l, as well as the last row of M. 

K known.     The matrix 2 is now pXp with 2q + 2 is redefined as p when it is even. 

Under Theorem 2(a) the first column of M is (has been) deleted,  and in the definition 

of p. we set y   - 1 and y   - -6     (k = 1, 2, ... , p).   Under Theorem 2(b), we set-A 
J u k k 

equal to the pXp identity matrix, and K equal to unity in the formula for p..   Thus,  in 

10 



the Corollary, the selected frequencies are Ct>, = 27rj/p.    In the formula for a     , the 
2    2 J ab 

multiplier becomes   la /p    and a, b runs over   1,2,... , p. 

Remark. When the independent errors are normal,   0    is the Maximum Likeli- 

hood estimate of  0 for every n.   This is true since the Least Squares estimate (p    of 

cp becomes the Maximum Likelihood estimate, and the Maximum Likelihood estimate 

of any  1-1  vector-valued function is the function of the Maximum Likelihood estimate. 

4.     PROOF OF THE LEMMAS 

i li 

Proof of Lemma 1.    In the standard fashion we write our p     order equation as a 

first order vector equation: 

x = 6 x       + v   e . 
t t-1       t    1 

where 

t-1 

t-1 

t-p 

1 

0 

e = 

p-i 

Iterating back to t = 0, the solution for positive times is 

t-1 

x=e'x    =e'6x,+    )    ß v 
t It        1 0       /_,     n t-n 

n=0 
where 

ß   = e' 0   e, 
n       1 1 

We first use the assumption of distinct roots to evaluate ß 

1 1 



Throughout A denotes an indeterminate complex scalar.    Define the unimodular 

(i.e. determinant = 1) matrix 

2 p-1 
1      A      X      .  .  .     Af 

E(A) 

1       X       .  .  .     X 

0 
1        A 

p-2 

Then 

EW^E^E^) ...   E       (X) 

where  E.(A) is the identity matrix with A added into the (j,j + l) position.    Right- 
J .th 

multiplication of any p*p matrix A = [a a  ] by E.(A) adds A times the j 
st 

column to the j +1    .   Consequently, 

AE(X) = [a.,a_+a.\, a„ + a~A + a.A ,... ,a   +a     .A+.-.+x'1       I L   1    2       1       3       2 1 p     p-1 ' 

where the successive columns are A-polynomials with vector coefficients.   The in- 

verse of the operator, 

E(A)"1 = E1(A) + E2(A) + --- +Ep_1(A), 

exists independently of A.    If we replace A by the characteristic matrix of Q we find 

(9-AI)E(A) 

gi<*>    g2W ^p-l(X) gp(X) 

0   J 

= F(A) 

12 



wherein 

g.(X) = Aj-01Aj"1 $     \ -0. (j = l,2,...,p) 

and g   is g in the statement of the lemma.    Since   | E(A)| = 1, 0 -AI and F(A) are 

rank equivalent, and the characteristic polynomial of 0 is simply 

| O-XI | =  |F(\)| = (-l)P+1gp(X) . 

Regarded as a function of A,  the characteristic matrix has full rank unless  X coincides 

with one of the roots 

X .,..., X 
1 p 

of  g (A) = 0.       In this case, 0-A.I has rank p-1.    Thus,  if X.  is repeated there is 

only one nonzero vector solution to the homogeneous equation (0 -A.I)x = 0.   Consequent- 

ly,   0 is equivalent (more properly, collinear) to the diagonal matrix  A of its eigen- 

values if and only if the eigenvalues are distinct.   This is our assumption. 

Since 0 is not normal,  i.e. does not commute with its transpose, two sets of 

eigenvectors are involved.    To each X belonging to the spectrum A , .... A    there 

are distinct nonzero vectors   f =-t    and r = r , unique up to a multiplicative constant, 
A A 

satisfying 

Qi 1 = XI 0r = Ar  . 

We use the "left-right" nomenclature relative to 0.    Let 

L =[i.,...,l  ]    R = [r r   ] 1   1 p' 1 p' 

be the matrices of these columns generated as A assumes the p spectral values. 

Then 

0R = 0[r r  ] =[6r< 9r  ]  = [A   r,,..., A   r   ] 1   1 pJ      L       1 p 1   1 p   p 

= RA 

13 



and 

9'L = LA       or L'9 = AL' 

Thus,  (without restriction on the eigenvalues) 

A(L'R) = L'6R = (L'R) A 

where L'R has the inner product V.r. for ij     entry.   In terms of elements, the 

statement that L'R commutes with A is 

(X. -A.) V.r. =   0 . 
i     J     i   J 

Thus, for distinct eigenvalues, I. is perpendicular to r. for all i ^ j (and the converse 

is also true).   The two vector sets are called bi-orthogonal, and 

L'R = D 

11 

22 

PP 

d.. = Vi 
n     j J 

We then have, since | D | f 0, 

O = RAR 
-1 

(RD  -)A(RD  -)'    , 

and the proper normalization for I. and r.  is   l/'vdT.  . 
J J JJ 

We now compute L, R and D as functions of the eigenvalues.    We have 

14 



(G' - A.I) *       =    E(A.)'_1 F(\.y I. 
J      J J J       J 

By definition -f    makes the left side the 0 vector, and hence F(A )'X. - 0.   These 
J J     J 

equations are 

-g](A.) 

o 

i 

*0 

Sl(V) 

R2(V> 

S-1(V 

= 0 

because e (A) = 0 for A = A...     The vector equation 6r. = A.r. is 
P J J       J J 

8     e      . . i 
12 p-1 

1 

1 1 
e 
p 

V1 
j 

i 

1 

! 

ö 
J 

i 

i 

1 i 0 1 

,P"! 

A 
1-    J 

The first of these says A. is a root, and the balance are redundancies.    Thus, 

1 

I. = 
J 

«i<V 

Lvi(VJ 

r   = 
j 

> 
j 

•1 

AP" 
j 

•2 

1 

15 



R  is a Vandermonde matrix with 

|R|   =(-DP+1IT   (\-K). 
i <j 

To compute the normalization 

p-1 

JJ      J  J      J ^J   k   j   j 

k=l 

we derive a A-identity.    If we multiply 

«kW • »k - Z Vk"! 

i=l 

p - k -1 
by A and sum over k we have 

p-1 

k=l 

p-1   k 

L u i 
k=l i=l 

=pAp-i-Ap-i-PyVp-^p'k'1 

k=l 

p-i 
Moving A       to the left side we obtain 

k=l 
*p-zV"k+« 

k=l 

We can set the arbitrary constant equal to -0  .   There results 

16 



p-1 

k=l 

In particular, for A = A. , 

i=l k=l i ^k 

d..= X-X. 
JJ   , i.  J   ] 

To find the dependence of j3    on the eigenvalues we use  L'6 = AL'.    We have 

i i 

L'6n = AnL'   = 
^2 

\ni> 
P   P 

Since the leading element of every t. is  1, 

L'G"e   = 
1 

-1 -1 
But   L'R = D implies L'      = RD    , so 

17 



G   e1 = RD 
-1 

Since e'R is the first row of R, 

«i°\ • < X""1 ] D"1 

P 

and therefore 

P XP-1 

V xn = 

j=l 
]J 

a  A. 
J   J 

i=l 

The vector a  satisfies 

La = e 

In particular, a    +• • • + a    = 1, as should be since ßn must be unity. r 1 p 0 
We now use the assumption that 

max    | A. | < 1 
l<j <p    J 

where 

norm 

denotes modulus.    For any pxq matrix A with elements a..,  define the 

18 



15 q v Aii= '1 K 
i=i j=i 

which generalizes length.    Then 

e;enx0l   ^He'JMIe^l 

Qnll    II-    II e ||||x0ll  . 

But 

||9n||   <  llRll  ||   An|| llR"1!!    =   const.     N/   X^ + .-.+A211' 
1 p 

—- 0 as n — °° . 

Translating the origin back to t = - °°, this establishes the formula asserted in Lemma 1. 

Proof of Lemma 2.    For v   =Kcoswt the steady state solution is, according to 

Lemma 1, 

where 

x   = (Ka')coswt + (Kb')sincot 

a' =   ) ß cos nw = a/K 
L   n 

n>0 

' ß   sinnw = a/K 
^   n 

Setting 

n^O 

A =   I -    ; e coskw 

k=l 

B =     > 0  sinkw , 

k=l 

19 



the assertion to be proved is clearly equivalent to 

2 2 
a'    +b' 

b' -B 
2 2 

a'    +b' 

This in turn holds if 

(A + iB)(a'-ib') = 1, 

since then 

.      .„ 1  a' + ib' 
A + iB = —;——r = —r; rr = —~ rr + i a'-ib' 2 2 2 2 2 2 

a'    + b' a'    + b' a'    + b' 

Putting 

we have 

and 

z = e 

A +iB 

P 

•'•zv" 
k=l 

= z v> 
a' -ib' 

n^O 

-I (JA >-n= 
n>0    k=l 

\ L (Yz)n 

k=l      n>0 

But \\ /z|  < I A   I < 1 by hypothesis for all k,  so 
K K 

P XP-I 
V z "k 

a'-ib' = > at   ——    with at    •• 
l_i    k z-A^ k 
k=l 

20 

n <vv 



It thus suffices to prove 

g   (2)   )  — P        Li   ''.-, 
k     _    p-1 

=   z 

k=l 

Since g (/.) =  j | (z-A), the left side is 
r . J 

J=1 

\ .P-1  TT  L L(z) = ) a    {J (z-X.) 
k=l     j^k k=l J ^k    k     J 

k=l 

Each of the summands is a (Lagrange) polynomial of degree p-1 in z,  so we must 

have 

. , v P-1 P-2 L(z) = cV      + c0zK     + • • • + c    . 12 p 

The coefficients are determined by the values of L at any p distinct points.    We of 

course use the characteristic roots,  since 

W • < 

if    k = i 

0 if    k^i 

Thus 

L(\.) - \ 
l l 

p-1 

This shows c   = 1 and c„ 
1 2 

(i=l, 2 p) 

p-1 
= c   = 0, i. e. L(z) = z 

P 

21 



5.     PROOF OF THE THEOREMS 

Proof of Theorem 1.   It clearly suffices to consider either an odd or an even 

number of parameters, and we choose the latter.   Thus, throughout the proof, 

p + l = 2q+2 (q^O). 

Furthermore, we set 

Wn = ° W   -LA   
= 7r- 0 q+1 

According to Lemma 2, then, the output which results from the input 

q 
1                        V                      1 

u   =   cosk> t +    /  cosw.t H cos^   , .t 
t      ^2 °        £ J        N/2 q+1 

J=1 

IS 

x   = (a„cosCi> t + b^sinco t) +  /  (a.cos w.t + b.sin^.t) 
t^-v0 0        0 0        l_j    j j        j j 

j=1 

+ (a   , . cosa>  ^.t + b      sinu      t ) 
i—      q+1 q+1 q+1 q+1 

= h£> , 

where h   is as in Step 1 and 

<p ' =   [an, a,, b ,. . . ,a , b , a        ] 1   0     1     1 q     q     q+1 

Furthermore, 
a 

J c     — 
J 2     ,2 a.  +b. 

J        .1 

b. 
d.   a 

J 
1 

2    ,2 
a. +b. 

p 

=     > y, cos kcu. 

k=0 

y, sinkw. 
k J 

j=0, 1 q,q+i 

j       j k=0 

22 



which imply b_ = b     , = 0.    Putting 
0       q+1 p 

r = [vci'di v Wi] 

y   - L'VQ» yi> • • • > y \» 

where yn = 1/K and y   = - 9 /K   (k=l, 2,. .., p), these equations are 

i/i = My 

with M as given in Step 3. 

Let   £    be the column vector of the first n noise realizations.    We have a data 
n 

model which is linear in the components of cp, 

y   = H' (p + i 
n       n n 

The estimate resulting from Step 1 can be written (p   = a? + B H   £   , or 
n n  n  n 

A (<p  -<p) =H  T (A   =B_1 ). 
n    n n   n n       n 

n 

For the p+1 by p+1 matrix A   = y    h h'  we have 

t=l 
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2 2 n 

-A =-2 
n   n  n j.= | 

,      1 1 1 
.'    coswt        sinco t  cosut 

N/2 j ^2 1 N/2 2 

cos co t cosco tsinco t    cosw tcosw t 
1 1112 

sin co t sinco tcoscot 
1 12 

cos co t 

(symmetric) 

1 (-1)  sinco t            -i—' 

N/2 q sTl 

I 

cosco tsinco t    cosco t 
1 q 1 

(-DL 

sinco tsinco t     sinco. (-D1 

1 ^       ""^2 

2 
sin co t 

q 
sinco t (-D

L 

q   V2 

From the identities 

_. sinnA .    , ... 
cos 2At   = -cos(n+l)A 

sin A 
t=l 

n 

sinnA       .      ... 
sin2At ,   ,   sin(n + l)A 

sin A 
t=l 

it follows for n -* °° that 

(A i- a multiple of IT) 
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2 \ — /   cos \x cos X,,t 
n /_j 1 2 

t=l 

n 
> = O(-)   for all 0=sx x   <7TwithX„ ?«X, f n 12 1       J 

—  >  sinX t sinX„t 
n i_i 1 2 

t=l 

n 

2 V        2  t 
-  >  cos   X 
n Li 

t=l 

n 
2 Y • V —   /  sin   X 
n Z^ 

t=l 

}   = 1 + 0(- )        for all 0 < X < 7T 

) 

n 
2 V —   /  cos X ,t sin X,.t 
n /_, 1 2 

t=l 

0,1, for all 0<x    x   si 
1    2 

Since w.,..., (JO   were chosen as interior points of (0,7r), we therefore have 
1 q 

IK -I + LE 
n    n n   n 

for some matrix E    whose elements remain uniformly bounded as n -* °°.    (To get the 
n 

identity matrix in the limit was our reason for using the amplitude  I/N/2 for the first 

and last input.)   Thus, 

(I+-E ){<p -<p)=-H   f 
n   n      n n   n  n 

and the estimate <p   will converge to n> in the same probabilistic sense that the vector 
n 
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2        - 
— H   £    converges to the zero vector, 
n   n   n ^ 

2      — 
The p + 1 components of —H   £     are arithmetic means 

n   n  n 

dl 
n 

.y« 
n ZA 

t=i 

n 
2 

n 
/   cosw4tf 

Li       it 
t=l 

n 
2 
n lsincV^t 

t=l 

n 
2   V 
- >   COS CO t£ 
n  L q   t 

t=l 

n 
2   V 
— >  sin co t£ 
n L        q   t 

t=l 

fi<-»\ 
t=i 

each of which has zero expectation.    For any average of the form 

n 

S   = —   / cos cot £ 
n     n   i_j *t 

t=l 
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we have 

Co 1   V (   S   cosix'n^    =-   /   coswtcoswn a 
n i_j n-t 

t=l 

By hypothesis, therefore, 

n-1 

|^Sneoscng   ,1N   |„t| = 0(-i-). 

t=0 

It follows from a LLN for dependent random variables that S   — 0 with probability 

one as n — °° (and, incidentally- also in mean square). 

Since strong convergence is preserved through continuous transformations, we 

successively conclude from w   — 0 that ib   —• il , y   — y, and the conclusion of the 
n n n 

lemma. 

Proof of Theorem 2.   We continue to take p+1 even, and note the modifications 

of the results needed for p+1 odd when we are done.    The asymptotic distribution at 

*Jn(0  - 0) is the same as that of  H   £   , which we express in symbols as 
n   ^ /-     n   n 

vn 

1- 2        - 
vn((/7   - 0)    ~      H   £ 

n /—    n   n 
vn 

Under the assumptions of the theorem the latter, by Liapounov's CLT, tends to be 

distributed in large samples as a p+1 dimensional normal random variable with zero 

mean vector and covariance matrix equal to 

lim<ff— H  f Y— H F%' 
n     Wn    n n' Wn   n n 

According to the asymptotic orthogonality relations used in the proof of Theorem 1, 
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n      n n 

f —   /      / cos cü t £   cos w s ^    =    )  cos a) t cos co t — 2CT   6 
n£j/_^ it jsn£j i j ij 

t=l s=\ t=\ 

as n — °° for all  i, j = 0, 1, .. ., q, q+1, provided i and j are not both 0 nor both q+1. 

The same limit holds when both cosines are replaced by sines.    For i = j = 0 (i.e. ^=0) 

andi = i = q + l  (i.e.  co      = 7r) we have 
q+1 

n n     n 

(-l)t4t(-l)
S4s = 2a2 

n     n n     n 

til I{tV nil 
t=l s=l t=l s=l 

for every n.    Finally, 

n     n „   n 

C4 V   V > 4a    V f —  >      / cosw t£   sincj.s £    =     /  cos Co.t sinco.t — 0 
n Li   /-J it j      s        n    Z^ i J 

t=l s=l t=l 

without restriction on i, j =0, 1, .... q, q+1.    Thus, 

"Vn(<p  -w)     ~     N(0, 2a21) 
n 

2 
where I is the p + 1 by p+1 identity.    This checks with the known result for N(0, a ) 

2 
errors ;viz., that w   is N(co, a B ) for every n.    (Recall B    = 2/n.) 

n n n 
Since the components of   ip    are functions of those of   0    we have, by the "delta 

method, 

2   2. 
^Jn(ip -ip)      ~       N(0, 2a  P  ) n 

where 

2-12    -1' 
^n(y -y)       ~       N(0,2a M    P M   "  ) 

n 

2 dip 
P   = D'D      and     D = —i- 

d(p 
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is the p+1 by p+1 matrix of partial derivatives computed at the true parameter 

values (induced by  K and the O's).    We have 

9c. 

3a. 
i 

3d 
=    _J_ - 

3b. 
i 

Ö       01 
ij    j 

0 
i 

2     9 
b -a 

-   J      j 
2     22 

(a. +b} 
J      J 

3d. 
J 

9c. 
- ___± - 

ab. 
i 

Ö../3. 
ij   J "J 

2 a b 
J  J 

3a. 
l 

,   2     .2.2 
(a. < b   , 

for all i, j = 0,1 q, q+1,  provided we continue to take b   = b      = 0 and ignore 

the variables not involved.    We see that 

D = 

a 

~ a 
i i 

1 k 

a 
q+1 

Since the inner product between any two different columns of D vanishes, we have 

2 2      2      2 
P   =diag[pQ, p1, pv vvv1 v"?*"? (vvi=0) 

The typical entry is 
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2      2 2 ,22 
2      (b    -a ) 4a   b 

p    = --s TH- 2      2 4 2      2 4 2       22 
(a   +b ) (a   +b ) (a   + b ) 

But from Lemma 2 

2   ,2 a   +b 
2       2 2      25 

a   +b (a   +b ) 

P 2 
(    /  y. coskw   )    + 

k=0 

\ 
v    . 

> y   sinkco  ) 

k=0 

In other words, 

"i V 
ikoj.     o 

J   I 

k=0 

for j = 0, 1 q, q+1 and 0 = w    < w   < • • • < o>  < OJ       = ir. J M 0       1 q      q+1 

Finally, we apply the "delta method" once again to get the large sample distribu- 
1                     yl ^n 

of   K = — ,   0   = ,..., 0   = - -2-  •    We have tion of the estimates 
Y, yr y. 

where 

^n(0  -0)   ~   N(0,2a2A'M_   P   M~     A) 
n 

A = 
8(K, 0, 0  ) 

1 P 
9(y0'Yl V 

= -K 

where I is the pxp identity. 

K     i     0 

0     I 

0     I 

1       2 
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We can give an alternate expression for the elements of P in terms of the 

characteristic polynomial 

P_„  JP-- 
P 

g(z) = 7}   -0   zr 

Dividing through by K we have 

P 

Kg(z) = Z    l\Z       • 
k=0 

_ iu> 
Putting z = e     and taking squared modulii gives 

P 
1    1   , iw>,2       , \        ikw . 2 —2\g(e    )\    =   12 V       I 
K k=0 

We therefore have 

P 

k=l 
P 

One can bound these quantities using the fact that   |g(e    )|=  J     |e     " ^, | satisfies 

k=i 

nd-!\D * ig(eiw)i ^n d+ixkD. 
k=l k=l 

For an odd number of parameters, 

p + 1 = 2q + 1 (q 2: 0) 

we simply delete the last row of M and the last entry of P. 

Proof of the Corollary.    From the identities used in the proof of Theorem 1 for 

the sum of the first n cosines and sines we have, with 
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relations 

»,-p^ä       «I-».« *«"•¥>• 

P+l 

cos« k cos w.k =    > cos w k cos w k + 1 - cos w (p+l) cos w (p+l) 
i ]        L i j i r 

k=0 k=4 

= *£«..+ 1-1 2      iJ 

for all i, j, provided both are not 0 or q-fl.    From similar ones involving sines, and 

cosines and sines, we see that 

MM' = S_1 

where S was defined in Sec.  2.    It is now a simple matter to solve My = ip .    Setting 

MQ = S2 M , 

we have MM' = I,  so that 

i 

r = M'S2i/>   = (SM)' 4> . 

Premultiplication by the diagonal matrix S multiplies the rows of M.    The scalar y 
K 

is the inner product between row k  of (SM)',  i.e. column k of SM, and ip    (k =0, 1, .. . , p). 

Thus 

c q k 
y,   =   •   +     >  (c. coskto. + d. sinkw.) + -—-   c rk      p+l     p+l   Z/ j j       j j      p + l    q+1 

J = l 

For p + l = 2q + l, the last term is deleted. 

The covariance matrix 2 under Theorem 2(a) becomes 

:YI 



—- 2 = MJSaP S2MQ = M'SP2SM = (PSM)' (PSM) 
2a 

The entry labeled a, b   (a, b = 0, 1, ..., p) is the inner product between the corres- 

ponding columns of PSM.    Thus 

/   i     N       /po\2    / 2pi\2 
 — ~     u   ~  { —TT       + '  —TT       [cosaw   cosbw   + sin aw   sinbw 1 + • 

\      2       yab       ^ p+1 /        ^ p + 1   '     l 1 1 1 1J 

+  ,   %  V    ......     ........       /VW.   .*+b -*r   '   ("cosaw   cosbw   + sin aw   sinbw ] + ( -^—-    (-if 
-i/   L        q        q q        q1    \P+i/ P+ 

which is the asserted formula.    Again,  if p + 1 = 2q + l, the last term is deleted. 
2  A  2  - 

The eigenvalues of 2 are clearly those of 2a  S2 P  S2 , viz. 

2(J2   r   2        2 2 .222, 
——-  {p   , 2p       2p       . . , 2p   , 2p   , p       } . 
p+1      0 1 1 q        q      q+lJ 

The determinant is their product: 

det 2 = 
2a2 \P+1  2 2 2 „2 2      2 

7 )      p    •  2p     •  2p    • • •  2p    •  2p   • p 
p + 1/ 0 1 1 q q      q+1 

Ma2\P+1   2   4 4   2 

Since 

17+v   popr"Vq+i 

detAM-K)P+1K = (-DP+1KP+2 

we have 

Är^-<KV<KV---*V<KV2 
det (A' S A) = |(   -^-7)       —^- •  (K pQ) (KPr...| 

2 
The quantities K p. depend only on the 0's.   Using the formula in terms of the *'s we 

2 ,p J 
see that Kp.< 4K. 

] 
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